Multiplication and Division: Prime Factors

Aim:

Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.

Ready-to-Progress Criteria:

Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors. (5MD-2)
To find prime factors of 2-digit numbers.

Success Criteria:
I can find factors of 2-digit numbers.
I can recognise prime numbers.
I can write a calculation to match
my drawing.

Key/New Words:

Prime, composite, factors, prime factors, product, calculation, factor tree.

Resources:
Lesson Pack
Multiplication Square

Preparation:

Differentiated Prime Factors Activity Sheets - one per child
Diving into Mastery Activity Sheets as required

Prior Learning: It would be helpful if the children could recap how to find factors of two-digit numbers. You can revise prior learning on factors here.

Learning Sequence

Remember It: Using the corresponding slide on the Lesson Presentation, the children will revise prior learning
on factors by finding all possible factor pairs for a selection of two-digit numbers. Children will further be
challenged to consider how they can prove that they have found all possible outcomes. The second slide
will reveal the answers which will allow children to check their findings and will provide the teacher with
an opportunity to assess the children's knowledge. Can the children organise their findings in a systematic
fashion? Can the children use knowledge of multiplication and dividing to find factor pairs?
Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative
activity. These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper'
section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill
and are applying this to show their depth of understanding.

Exploreit

Reviseit: Using this resource, children could recap their prior knowledge on Factor Pairs.
Buildit: Children can create a human factor tree to further find out about prime factors.
Learnit: Children will find this visually exciting Knowledge Organiser a useful tool to support their understanding of prime factors.

Disclaimer

We hope you find the information on our website and resources useful.

Animations

This resource has been designed with animations to make it as fun and engaging as possible. To view the content in the correct formatting, please view the PowerPoint in 'slide show mode'. This takes you from desktop to presentation mode. If you view the slides out of 'slide show mode', you may find that some of the text and images overlap each other and/or are difficult to read.

To enter slide show mode, go to the slide show menu tab and select either from beginning or from current slide.

Maths

Multiplication and Division

Prime Factors

Aim

- To find prime factors of 2-digit numbers.

Success Criteria

- I can find factors of 2-digit numbers.
- I can recognise prime numbers.
- I can write a calculation to match my drawing.

Remember It

List all the factors that you can find for the numbers below.

How could you organise your findings so that you can be certain that you have found all the possible factors?

They are called prime factors because:

- They are prime numbers.
- This means they are numbers which have only ctors (1 and themselves).

Factor Trees

Which type of numbers has she created branches from? She has created branches from the composite numbers.

Why has she circled certain factors?
She has circled these factors because they are prime factors.
Why has she not created branches from the numbers 2 and 3 ?
She has not created branches from 2 and 3 because they are prime factors.

Factor Trees

Which type of numbers has she created branches from? She has created branches from the composite numbers.

Why has she circled certain factors?
She has circled these factors because they are prime factors.
Why has she not created branches from the numbers 2 and 5?
She has not created branches from 2 and 5 because they are prime factors.

Complete the factor trees with a partner. Can you spot the prime factors? Make sure you circle them!

Feeling confident? Have a go at creating your own factor trees for the following numbers.

$\begin{array}{llll}32 & 44 & 54 & 68\end{array}$

Check your answers!

Factor Trees

Check your answers!

Factor Trees

Check your answers!

Prime Factors Multiply to Make a Product

Let's go back to Jenny's factor tree.

> After I have created a factor tree, I can write a calculation to show how the prime numbers are multiplied to create the product.

Prime Factors Multiply to Make a Product

Can you write the calculations for the factor trees below? Discuss your calculation with a partner.

$$
2 \times 2 \times 7=28
$$

Prime Factors
 Wen you holp her but socling the prime foctex. Son youl holp her du s.ecling the prime fosto the frest onie has heen done jor yau.

Prime Factors

 utching celailition enas cicte $11 \times$ prime Jmana!

 *) 3 fowuo.ransmer.

Prime Factors

twe for the zantere 24

4

Sossitle co co mplets ons of these Aerers wosus. 15 he correct: frowe.
\qquad

Diving into Mastery

Is the above statement: always true, sometimes true or never true?

The above statement is always true.

$$
\text { An example: } 2 \times 3=6
$$

If we multiply two prime numbers, we instantly give the product two factors in addition to 1 and itself. Therefore, it is a composite number.

Aim

- To find prime factors of 2-digit numbers.

Success Criteria

- I can find factors of 2-digit numbers.
- I can recognise prime numbers.
- I can write a calculation to match my drawing.

Regent Studies|www.regentstudies.com

Aim: To find prime factors of 2-digit numbers.				Date:					
				Delivered By:			Support:		
Success Criteria	Me	Friend	Teacher	T	PPA	S	I	AL	GP
I can find factors of 2-digit numbers.				Notes/Evidence					
I can recognise prime numbers.									
I can write a calculation to match my drawing.									

Next Steps

\mathbf{T}	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

1)

2) 103 is a prime number.

86 is double a prime number.
7 is a prime factor of 28 and 35.
88 is the product of: $2 \times 2 \times 2 \times 11$
3) $9=3 \times 3$
$18=2 \times 3 \times 3$
$36=2 \times 2 \times 3 \times 3$
$81=3 \times 3 \times 3 \times 3$

1) Harry is correct.

However you create the tree, the prime factors will always be $2 \times 2 \times 2 \times 2 \times 3=48$.
Children should prove this with examples of different factor trees.

2) The statement is incorrect as $2 \times 2 \times 2 \times 2 \times 2=32$ and the greatest number out of all of the cards is 150 which is the calculation $2 \times 3 \times 5 \times 5$.

1) a) $a=2,4,16,8,32$
$b=32,16,8,4,2$
b) $64=2 \times 2 \times 2 \times 2 \times 2 \times 2$
2) Accept any two of the following:

48, 54, 72, 96
3) The answer is 210 .
$210=2 \times 3 \times 5 \times 7$

1) Match the numbers with their prime factors.

3 and 5

35
5 and 7

2, 3 and 5

2) Find the number that makes each statement true. Use each number only once.

\qquad is a prime number.
\qquad is double a prime number.
\qquad is a prime factor of 28 and 35 .
\qquad is the product of $2 \times 2 \times 2 \times 11$
3) Write the numbers as products of their prime factors.

$36=$ \qquad
$81=$ \qquad
4) Harry has been creating factor trees to find prime factors.

It doesn't matter how you create the tree for number 48. The prime factors will always be the same.

Prove that Harry is correct.
\square
2) Four numbers have been written on cards as the product of their prime factors.

Do you agree? Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

1) a) Which numbers could be the unknown values in the factor tree below? Write down all the possible outcomes for a and b.

b) Write 64 as a product of its prime factors.
$64=$ \qquad
2) Find two 2-digit numbers greater than 40 that have 2 and 3 as their only prime factors.
\square
3) I am the smallest number possible that has four different prime factors. Can you find me?
4) Match the numbers with their prime factors.

3 and 5

5 and 7

24
2, 3 and 5
2) Find the number that makes each statement true. Use each number only once.

\qquad is a prime number.
\qquad is double a prime number.
\qquad is a prime factor of 28 and 35 .
\qquad is the product of $2 \times 2 \times 2 \times 11$
3) Write the numbers as products of their prime factors.

$36=$ \qquad
$81=$ \qquad

1) Match the numbers with their prime factors.

2 and 3

3 and 5

5 and 7

2, 3 and 5

2) Find the number that makes each statement true. Use each number only once.

\qquad is a prime number.
\qquad is double a prime number.
\qquad is a prime factor of 28 and 35 .
\qquad is the product of $2 \times 2 \times 2 \times 11$
3) Write the numbers as products of their prime factors.
$9=\square \times \square$
$18=$ \square
 $\times \square$
$36=$ \qquad
$81=$ \qquad
4) Harry has been creating factor trees to find prime factors.

It doesn't matter how you create the tree for number 48. The prime factors will always be the same.

Prove that Harry is correct.
2) Four numbers have been written on cards as the product of their prime factors.

1) Harry has been creating factor trees to find prime factors.

It doesn't matter how you create the tree for number 48. The prime factors will always be the same.

Prove that Harry is correct.
2) Four numbers have been written on cards as the product of their prime factors.

1) a) Which numbers could be the unknown values in the factor tree below? Write down all the possible outcomes for a and b.

b) Write 64 as a product of its prime factors.
$64=$ \qquad
2) Find two 2-digit numbers greater than 40 that have 2 and 3 as their only prime factors.
3) I am the smallest number possible that has four different prime factors. Can you find me?

4) a) Which numbers could be the unknown values in the factor tree below? Write down all the possible outcomes for a and b.

b) Write 64 as a product of its prime factors.
$64=$ \qquad
5) Find two 2-digit numbers greater than 40 that have 2 and 3 as their only prime factors.
6) I am the smallest number possible that has four different prime factors. Can you find me?

Prime Factors

To find prime factors of 2-digit numbers.

Aneeka has completed some factor trees. Can you help her by circling the prime factors? The first one has been done for you.
1)

George has tried to complete some factor trees but he has become a little lost along the way. Could you help him complete his factor trees? Don't forget to circle the prime factors!

Prime Factors

To find prime factors of 2-digit numbers.

Complete the factor trees and write the calculation to match.
Remember to circle the prime factors.

\square x \square \times \square \times \square
3)

Create factor trees to find the prime factors of the following numbers: $\begin{array}{llll}48 & 56 & 84\end{array}$ Don't forget to write the matching calculation and circle the prime factors!

7) Claudia says that there is only one way to create a factor tree for 24. Do you agree or disagree? Prove your answer.

Prime Factors

To find prime factors of 2-digit numbers.

1) a) Complete the factor trees for the number 24 .
(
b) What is 24 as a product of its prime factors?

c) Isaac says that it is possible to complete one of these factor trees in two different ways. Is he correct? Prove it.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2) Which has more prime factors, 26 or 42 ? How could you prove it?
\qquad
\qquad
\square
3) Abigail has completed a factor tree for the number 100 .

What mistake has she made?
\qquad
\qquad
\qquad
\qquad

Prime Factors Answers

Prime Factors Answers

7) Claudia says that there is only one way to create a factor tree for 24.

Do you agree or disagree? Prove your answer.
There are three ways. Claudia's first branch could be: 2 and 12, 8 and 3, or 4 and 6.

Prime Factors Answers

1) a) Complete the factor trees for the number 24 .

Also accept a branch from 12 with factors of 4 and 3, with a branch from 4 showing factors of 2 and 2.
b) What is 24 as a product of its prime factors?

$$
24=2 \times 2 \times 2 \times 3
$$

c) Isaac says that it is possible to complete one of these factor trees in two different ways. Is he correct? Prove it.
There is more than one way of completing the first tree. You could either create a branch from 12 showing factors of 2 and 6, with a branch from 6 showing factors of 2 and 3; or you could create a branch from 12 showing factors of 4 and 3, with a branch from 4 showing factors of 2 and 2.
2) Which has more prime factors, 26 or 42 ? How could you prove it?

26 only has 2 and 13 as its prime factors whereas 42 has 2, 3 and 7. Children may prove their answer by drawing a factor tree.
3) Abigail has completed a factor tree for the number 100. What mistake has she made?
Abigail has made a mistake by thinking that $5 \times 5=10$. She probably got confused with adding and multiplying. She has completed her first branches correctly as $10 \times$ $10=100$. Abigail should have written 2×5 for both of her second branches.

Multiplication and Division | Prime Factors

To find prime factors of 2-digit numbers.		
I can find factors of 2-digit numbers.		
I can recognise prime numbers.		
I can write a calculation to match my drawing.		

Multiplication and Division | Prime Factors

To find prime factors of 2-digit numbers.		
I can find factors of 2-digit numbers.		
I can recognise prime numbers.		
I can write a calculation to match my drawing.		

Multiplication and Division | Prime Factors

To find prime factors of 2-digit numbers.		
I can find factors of 2-digit numbers.		
I can recognise prime numbers.		
I can write a calculation to match my drawing.		

Multiplication and Division | Prime Factors

To find prime factors of 2-digit numbers.		
I can find factors of 2-digit numbers.		
I can recognise prime numbers.		
I can write a calculation to match my drawing.		

Multiplication and Division | Prime Factors

To find prime factors of 2-digit numbers.		
I can find factors of 2-digit numbers.		
I can recognise prime numbers.		
I can write a calculation to match my drawing.		

Multiplication and Division | Prime Factors

To find prime factors of 2-digit numbers.		
I can find factors of 2-digit numbers.		
I can recognise prime numbers.		
I can write a calculation to match my drawing.		

Multiplication and Division | Prime Factors

To find prime factors of 2-digit numbers.		
I can find factors of 2-digit numbers.		
I can recognise prime numbers.		
I can write a calculation to match my drawing.		

Multiplication and Division | Prime Factors

To find prime factors of 2-digit numbers.		
I can find factors of 2-digit numbers.		
I can recognise prime numbers.		
I can write a calculation to match my drawing.		

